化学原料和油价区别在哪-化学原料和油价区别
1.国际油价持续走高,WTI原油涨超4%,会产生哪些影响?
2.化学与能源的关系?
3.职业规划问题,欢迎精英回答。化学工程煤化工方向,最好有从事煤气化,甲烷化的老师傅帮帮我。
4.石油上涨对中国到底有什么好处?
5.煤层气作为化工原料的市场定价
国际油价持续走高,WTI原油涨超4%,会产生哪些影响?
国际油价一路走高对我人们的生活会造成一定的影响,人们的出行成为了一个很大的问题,毕竟国际油价上涨,加油站一定不会坐视不理的。2021年6月初的时候,加油站加油一箱92加满已经需要400+的价格了。一看单价,92已经要接近7块钱了,95已经突破7块钱了。
油价的涨跌关乎着广大人民群众的生活,不仅仅是有车的人民群众会受到影响,就连没有车的人民群众的出行也会受到一定的影响。随之而来的影响不仅仅是在燃油制品这一个区域,社会上所有的事情都可能因为燃油价格的上涨而受到影响。
乍一听有些危言耸听,但是仔细想一想石油制品都有哪些就明白了。石油制品的范围之广是我们无法想象的,可以说城市人生活的地方,目光所及之处都可能有石油制品。
一、石油价格持续走高对社会的影响石油是一个国家最重要的战略资源之一,也是人们生活中不可缺少的东西。国际油价的上涨产生的影响会体现在社会的各个方面。大到国家经济,小到人们的衣食住行都会受到影响。
一个国家的发展需要国家的经济足够稳定,而国际原油价格正是会影响这一因素的存在。好在我国的石油储备也是非常丰富的,一时间的国际油价变动并不会产生太大的影响。
但是,一旦国际油价持续走高,那么必定会对我们生活中的各行各业都会造成严重的影响,从而影响到在这个社会中生活的老百姓们。
二、石油的衍生品对于社会的影响石油产品可分为: 石油燃料、 石油溶剂与化工原料、润滑剂、石蜡、石油沥青、石油焦等6类。光从这几大分类当中,我们就可以看出石油在如今社会当中不可或缺的地位。
还有一些大家没办法从只有制品的大分类中看出来的一些东西。比如说我们生活中随处可见的塑料制品,它的主要生产原料当中就有石油经过裂化裂解可以得到乙烯。这是我们日常生活中用到的很多东西的基本原料。
所以,国际原油价格上涨很可能影响到我们日常生活的方方面面。因为,有太多的生活用品都依赖于石油的衍生产品了。这些和石油相关的产品肯定会随着石油价格的变化而有所调整。
三、人们的生活需要一个相对稳定社会的环境从石油的衍生品对于我们生活当中的各种产品的影响,我们可以得出一个结论。那就是,如果国际油价持续走高,那么势必会影响到我们生活的成本。
生活成本一旦快速上涨,势必会影响到我们的经济发展。所以,国际油价的调整对于所有的国家和经济的发展都是有着非常大的影响的。
四、我自己所感受到的影响在国际油价涨起来之后,我发现加满一箱油从以前的三百多元涨到了四百多元。作为一个车主,油价上涨的幅度实在是有些难以接受,不过也没有办法,油总得加,门总得出。只是相比之前,可以选着公用交通工具的时候,会优先考虑公用交通工具了。
化学与能源的关系?
化学与能源主要是两个方面的关系,一是解决旧能源带来的污染,二是发掘新能源以解决能源危机。
新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。能源世界有最全面的资料免费下载
参考资料编辑本段]分类
新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。
据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被是做垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等
[编辑本段]新能源概况
据估算,每年辐射到地球上的太阳能为17.8亿千瓦,其中可开发利用500~1000亿度。但因其分布很分散,目前能利用的甚微。地热能资源指陆地下5000米深度内的岩石和水体的总含热量。其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。限于技术水平,现尚处于小规模研究阶段。当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。
[编辑本段]常见新能源形式概述
(具体内容详见各能源形式所对应的词条)
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。
太阳能可分为2种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2;,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源。氢能可以作飞机、汽车的燃料,可以用作推动火箭动力。
海洋渗透能
能源世界有最全面的资料免费下载
参考资料 如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。
[编辑本段]新能源的发展现状和趋势
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。
目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。
我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。
新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。
太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。
风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。
早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。
新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。
随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。
[编辑本段]新能源的环境意义和能源安全战略意义
我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。
国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。
此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。
新的能源是什么
1
新能源,包括太阳能、风能、地热能、海洋能、生物质能和其他可再生能源。合理的开发利用新能源,可以改善和优化能源结构,保护环境,提高人民生活质量,促进国民经济和社会可持续发展。
新能源开发利用主要包括新能源技术和产品的科研、实验、推广、应用及其生产、经营活动。新能源的开发利用,应当与经济发展相结合,遵循因地制宜、多能互补、综合利用、讲求效益和开发与节约并举的原则,宣传群众,典型示范,效益引导,实现能源效益、环境效益、经济效益和社会效益的统一。
2
随着科学技术和社会生产力的不断发展,能源的问题显得越来越重要。目前,全世界的能源仍以煤、石油和天然气等化石燃料为主。这些化石燃料储量有限,同时它们又是极其宝贵的化工原料,可以从中提炼和加工出各种化学纤维、塑料、橡胶和化肥等化工产品。将这样重要的化工原料作为能源来使用实在可惜。随着社会生产力的发展和人类生活水平的提高,世界能源的消耗量愈来愈大。据估计,全世界石油、天然气和煤的储量最多只能供给人类使用一、二百年。因此,摆在人类面前的一项紧迫的战略任务就是探索新能源。目前研究开发的新能源主要有以下几种:
1.地热能与潮汐能
可利用的地热资源是地下热水、地热蒸气和热岩层。地下热水层一般在地下两千多米深处,温度80℃左右。将地下热水降低压力使之变成蒸气(在47.34 kPa时水80℃沸腾),可推动汽轮发电机发电。
潮汐能利用的是海水涨落造成的水位差。此种能量可以作为动力来推动水轮机发电。地球上潮汐涨落中蕴藏的能量是巨大的,但建造大规模的潮汐电站技术上有很多困难,成本也较高。
2.太阳能
太阳每年辐射到地球表面的能量约为5×10^22J,相当于目前世界能量消耗的1.3万倍,可以说太阳能是取之不尽用之不竭的无污染的理想能源。因此,太阳能的收集利用是当代科学家十分感兴趣的问题。
目前太阳能利用主要有三种形式。一种是直接利用太阳辐射热,建成太阳灶、太阳能热水器,太阳房(用于采暖)和塑料大棚等,或利用太阳能来发电。太阳能电站是利用集热器吸收太阳辐射的热量,其蓄热材料(液态金属)温度可高达1000℃左右。所吸收的热量通过热交换器将水变成水蒸气推动汽轮机发电。这种转换方式称之为光-热转换。第二种是光-电转换,即利用太阳能电池将太阳能直接转换成电能。太阳能电池种类较多,主要有单晶硅电池、砷化镓电池、磷化铟电池和多晶硅电池等。目前太阳能电池效率还比较低,成本也比较高。它主要用于人造卫星等宇宙飞行器作为各种仪器设备的动力。第三种是光-化学转换,即将太阳辐射直接转换成化学能。绿色植物的光合作用就是光-化学转换,但它还不能完全受人控制。因此,研究各种完全可控的光-化学转换方法也是当今世界重大的研究课题之一。近年来发现,太阳能辐射到某一光化学反应体系后,能形成动力学上稳定的光产物,使光能转化为化学能而储存起来。另外,在催化剂存在时,由太阳光直接分解水而制得氢和氧的方法也是太阳能利用较有发展前途的一条途径。发展氢能具有独特的优越性。首先,氢的原料是水,资源丰富。另外氢燃烧后的热值较高,1g 氢燃烧后可放出143 kJ的热量,而1g煤燃烧只有31~32kJ,1g汽油燃烧也只有48kJ。还有氢燃烧生成水,它来源于水又还原于水,是顺应自然的一种循环,不会打乱自然界的平衡。又因燃烧产物无烟尘以及其它污染物,所以氢能又是无污染的清洁能源。
虽然,地球接受太阳的总能量很大,但是由于其能量密度很低,取得单位能量的一次投资大,能量转换效率有待提高。
3.核能
原子核裂变和聚变时都放出巨大的能量。原子核能是一种比较理想的能源。
(1)核裂变能
裂变是较重的原子核在足够能量的中子轰击下分裂成较轻原子核的过程。当235U原子核发生裂变时,分裂成两个不相等的碎片和若干个中子。裂变过程相当复杂,已经发现裂变产物有35种元素,放射性核素有200种以上。下面是235U裂变中的一种方式:
[编辑本段]未来的几种新能源
波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。
可燃冰:这是一种与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。
煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。
微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。
职业规划问题,欢迎精英回答。化学工程煤化工方向,最好有从事煤气化,甲烷化的老师傅帮帮我。
简介
chemical processing of coal 煤化工过程将煤炭转换为气体、液体和固体产品或半产品,而后进一步加工成化工、能源产品的工业。 包括焦化、电石化学、煤气化等。随着世界石油资源不断减少,煤化工有着广阔的前景。 以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。 主要包括煤的气化 、液化 、干馏,以及焦油加工和电石乙炔化工等。 在煤化工可利用的生产技术中,炼焦是应用最早的工艺,并且至今仍然是化学工业的重要组成部分。 煤的气化在煤化工中占有重要地位,用于生产各种气体燃料,是洁净的能源,有利于提高人民生活水平和环境保护;煤气化生产的合成气是合成液体燃料等多种产品的原料。 煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。在石油短缺时,煤的液化产品将替代目前的天然石油。
编辑本段发展运用
煤化工开始于18世纪后半叶,19世纪形成了完整的煤化工体系。进入20世纪,许多以农林产品为原料的有机化学品多改为以煤为原料生产,煤化工成为化学工业的重要组成部分。第二次世界大战以后,石油化工发展迅速,很多化学品的生产又从以煤为原料转移到以石油、天然气为原料,从而削弱了煤化工在化学工业中的地位。煤中有机质的化学结构,是以芳香族为主的稠环为单元核心,由桥键互相连接,并带有各种官能团的大分子结构,通过热加工和催化加工,可以使煤转化为各种燃料和化工产品。焦化是应用最早且至今仍然是最重要的方法,其主要目的是制取冶金用焦炭 ,同时副产煤气和苯、甲苯、二甲苯、萘等芳烃。煤气化在煤化工中也占有重要的地位,用于生产城市煤气及各种燃料气 ,也用于生产合成气 ;煤低温干馏、煤直接液化及煤间接液化等过程主要生产液体燃料。
编辑本段加工过程
煤中有机质的化学结构,是以芳香族为主的稠环为单元核心,由桥键 加工过程
互相连接,并带有各种功能团的大分子结构(见煤化学),通过热加工和催化加工,可以使煤转化为各种燃料和化工产品(见图)。 在煤的各种化学加工过程中,焦化是应用最早且至今仍然是最重要的方法,其主要目的是制取冶金用焦炭,同时副产煤气和苯、甲苯、二甲苯、萘等芳烃;煤气化在煤化工中也占有很重要的地位,用于生产城市煤气及各种燃料气(广泛用于机械、建材等工业),也用于生产合成气(作为合成氨、合成甲醇等的原料);煤低温干馏、煤直接液化及煤间接液化等过程主要生产液体燃料,在20世纪上半叶曾得到发展,第二次世界大战以后,由于其产品在经济上无法与天然石油相竞争而趋于停顿,当前只有在南非仍有煤的间接液化工厂;煤的其他直接化学加工,则生产褐煤蜡、磺化煤、腐植酸及活性炭等,仍有小规模的应用。
编辑本段世界煤化工
世界上生产的煤,主要用作电站和工业锅炉燃料;用于煤化工的占一定比例,其中主要是煤的焦化和气化。80年代世界焦炭年产量约340Mt,煤焦油年产量约 16Mt(从中提炼的萘约1Mt)。煤焦油加工的产品广泛用于制取塑料、染料、香料、农药、医药、溶剂、防腐剂、胶粘剂、橡胶、碳素制品等。1981年,世界合成氨总产量95.3Mt,主要来源于石油和天然气。以煤为原料生产的氨只约占10%;自煤制合成甲醇的比例也很小,仅占甲醇总产量约1%。 美国煤化工1984年美国用煤717.7Mt,其中用于炼焦的占5.5%,达39.5Mt。炼焦副产的苯占苯总产量的9%,以电石乙炔为原料生产的醋酸乙烯在其总产量中占 8%。1984年美国建成由褐煤气化再甲烷化生产高热值城市煤气的工厂,日加工褐煤22kt,产气3.89Mm。近年,又在煤气化和液化方面,进行了不少新工艺试验。 联邦德国煤化工1984年联邦德国用煤84.8Mt(不包括褐煤),炼焦用煤占32.6%,为27.6Mt,煤焦油年产量约 1.4Mt。全国钢铁等企业的焦炉生产的煤焦油集中到五个焦油加工厂进行加工,生产的化学品达500多种。电石乙炔化工方面曾有很大发展,当前在技术上仍有改进。在煤的加压气化和直接液化研究方面也有一些新的进展。 日本煤化工1984年日本共用煤106.9Mt,由于其钢铁工业很发达,炼铁等冶金用焦炭需要量很大,因此炼焦用煤占66%,为 70.5Mt。每年的煤焦油产量达2.4Mt,提供了全部萘的工业来源。以电石乙炔为原料生产的醋酸乙烯在其总产量中占23%。 南非煤化工南非是当前世界上仍拥有煤间接液化工厂的地区,有SASOL-Ⅰ、SASOL-Ⅱ、SASOL-Ⅲ三座合成液体燃料工厂,年加工煤共约33Mt,生产汽油、柴油、喷气燃料等油品数百万吨,副产气态烃、乙醇、氨、硫等化学品数十万吨。
编辑本段中国煤化工
从总量上来看,2006年在建煤化工项目有30项,总投资达800多亿元,新增产能为甲醇850万吨,二甲醚90万吨,烯烃100万吨,煤制油124万吨。而已备案的甲醇项目产能3400万吨,烯烃300万吨,煤制油300万吨。2006年,国家发改委出台了政策并利用各种渠道广泛征求意见,以期规范和扶持煤化工产业的发展。2006年中国自主知识产权的煤化工技术也取得了很大的进展,开始从实验室走向生产。 2007年是中国煤化工产业稳步推进的一年,在国际油价一度冲击百元大关、全球对替代化工原料和替代能源的需求越发迫切的背景下,中国的煤化工行业以其领先的产业化进度成为中国能源结构的重要组成部分。煤化工行业的投资机遇仍然受到国际国内投资者的高度关注,煤化工技术的工业放大不断取得突破、大型煤制油和煤制烯烃装置的建设进展顺利、二甲醚等相关的产品标准相继出台。 新型煤化工以生产洁净能源和可替代石油化工的产品为主,如柴油、汽油、航空煤油、液化石油气、乙烯原料、聚丙烯原料、替代燃料(甲醇、二甲醚)等,它与能源、化工技术结合,可形成煤炭——能源化工一体化的新兴产业。煤炭能源化工产业将在中国能源的可持续利用中扮演重要的角色,是今后20年的重要发展方向,这对于中国减轻燃煤造成的环境污染、降低中国对进口石油的依赖均有着重大意义。可以说,煤化工行业在中国面临着新的市场需求和发展机遇。
编辑本段煤化工前景
纵观近百年化学工业的发展历史,其间每次原料结构的变化总伴随着化学工业的巨大变革。1984年世界化石燃料探明的可采储量,煤约占74%,而石油约12%、天然气约10%,从资源角度看,煤将是潜在的化工主要原料。未来煤化工将在哪些领域,以什么速度发展,将取决于煤化工本身技术的进展以及石油供求状况和价格的变化。从近期来看,钢铁等冶金工业所用的焦炭仍将依赖于煤的焦化,而炼焦化学品如萘、蒽等多环化合物仍是石油化工所较难替代的有机化工原料;煤的气化随着气化新技术的开发应用,仍将是煤化工的一个主要方面;将煤气化制成合成气,然后通过碳一化学合成一系列有机化工产品的开发研究,是近年来进展较快,且引起关注的领域;从煤制取液体燃料,无论是采用低温干馏、直接液化或间接液化,都不得不取决于技术经济的评价。
编辑本段发展条件
丰富、廉价的煤炭资源
一是我国的能源禀赋特点是“缺油、少气、煤炭资源相对丰富”;二是煤炭价格相对低廉。有很多地方,煤炭资源丰而不富,如资源分布广而散,小矿多,大矿少,鸡窝矿多。这会导致煤炭供应数量的不稳定;成分上不 稳定。化工生产是要长周期稳定运行的,原料数量和质量不稳定,化工生产就无法正 常操作。一般地讲,一个像样的煤化工项目,一年要消耗几百万吨煤炭,要保持煤化 工企业运行几十年,考虑到开采率等问题,没有几十亿吨的储量是难以满足煤化工企 业的要求的。如果当地煤炭资源储量不大,成分不稳定,或者灰粉太高,热值不高, 那么,就不必要硬去搞煤化工,还是把这些煤用作燃料为好。 煤炭价格是发展煤化工的另一个重要因素。煤价过高,就使得煤化工企业没有竞 争力。相对于石油化工和天然气化工而言,煤化工单位产品投资大,财务费用高。煤 价过高,单位产品成本就必然高,体现不出煤化工的优势。2004 年美国一家煤化工公 司的到厂煤价为 20 美元/bbl。在工作中遇到很多煤化工项目,有的原料煤价格很便 宜,在 100 元/t 以下,项目效益很好,如陕北、内蒙古等地;而有的地方虽然有煤 炭资源,但煤价很高,有的烟煤甚至达到 400 元/t 以上,有些山西无烟块煤到厂价 达到 700 多元/t 甚至还要高,项目竞争力很弱。
充足的水源
耗水量大是煤化工的一大特点。很多地方煤资源丰富,水资源却短缺。中国北方和沿海大部分地区都属于这种情况。有许多煤化工企业受缺水的困扰,常常出现煤化工企业与农业或其他工业争水现象。要保持煤化工企业正常运行,起码要保证每小时 上千吨新鲜水的供应。真正上规模的煤化工企业,2000-3000t/h 的用水量也是必要的。 同时,煤化工企业对水价也比较敏感。全国各地水价相差很大,一般南方靠近江 河的地方水价便宜,新鲜水价格 0.2-0.3 元/t,水资源费 0.02-0.03 元/t,大部分地区 水价格在 0.4-0.5 元/t。然而,有的地方要从很远地方调水,有些工业园区水价很高, 达到 1.5 元/t,企业难以承受。个别沿海缺水地区,选用海水淡化,水价至少达到 5 元/t,若煤化工企业用就承受不起。
交通便利
煤化工企业产品和原料运输量大,交通运输显得十分重要,最好是靠近铁路或水运方便的地方。铁路、水运和汽运比较起来,一是铁路和水运在数量上可以很方便地满足要求,数量大了,汽运组织起来很麻烦;二是铁路和水运价格大大低于汽车运输 价格。目前铁路运价一般为 0.15 元/(t·km)(指国铁),水运价格为 0.10 元/(t·km), 而汽运价格为 0.32 元/(t·km),相差甚大。三是汽车运输损耗大。当然,煤化工企 业坐在煤田上,靠皮带运输,可以大大减少原料煤的运输量。但产品还要运出去,还是有铁路好。国外的经验也是这样的。目前国内也有很多小型煤化工企业不靠铁路运 输,发展受到限制。
有一定的环境容量
中国煤炭资源丰富,但总体上说,煤含硫高,开发利用的环保要求高。2003 年中国 SO2 排放和 CO2 排放分别占世界第一和第二,其中 90%的 SO2 的排放来自煤的使用。 煤化工企业排污是不可避免的,即使经处理达到排放标准,总还是有三废要排放 的。这是不可回避的问题。中国南方煤质含硫量高,很多地方环境容量已经饱和或已 超标,尤其是山区较多的地区,废气扩散困难,很多地方酸雨严重,再发展煤化工已 没有余量,项目很难通过环保部门的审批。 煤化工替代燃料产品可分为三类:含氧燃料(醇/醚/酯)、合成油(煤制油)、气体燃料(甲烷气/合成气/氢气)。其中含氧燃料技术成熟,是近期应予推广应用的重点;合成油与现有车辆技术体系和基础设施完全兼容,但其技术尚待完善,将在2020年发挥重要作用;气体燃料车优点很多,我国将从基础科学研究、前沿技术创新、工程应用开发等方面逐一突破。
望采纳。
石油上涨对中国到底有什么好处?
因为中国是亚洲乃至全球最大的原油进口国,消费量非常大,国内原油短缺也就对外依赖较大,那么油价过快上涨,整体上利于石油上游采掘炼化企业,这些企业将从油价上涨中获取更多利润,但对于下游企业尤其是石油消费行业,则带来比较明显的负面影响,尤其是航空业受损最大,此外主要以石油为原料的化纤、橡胶等行业也将面临着成本上升压力。不过从长期来看影响还是不大的,毕竟中国的能源消费中石油的比重只有18%,而煤炭则高达60%。
温馨提示:以上内容仅供参考。
应答时间:2021-09-26,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">煤层气作为化工原料的市场定价
在化工行业,山西晋城煤业集团利用煤层气为原料建设煤化工项目中,发现以煤层气为原料制取的合成气中多氢少碳,而以煤为原料制取的合成气中多碳少氢。这两种方式互补,大大减少后续工艺中的气体变换量,从而取得了最佳的工艺效果和最大的经济效益。因此,以高硫煤和煤层气两种资源为原料建设煤化工项目,可以更加体现出其综合利用、清洁生产和经济高效的特点。
目前,我国化工行业主要以天然气作为制造化肥的原料,其中以合成氨为主要产品。用天然气生产合成氨具有低能耗、工艺流程短、投资少和经济效益高的特点。化工第一设计院根据原料价格的变化进行了化肥生产成本的测算,得出不同原料价格的保护对化肥生产成本的影响(表8-7)。
表8-7 原料价格对化肥生产成本的影响[129]
从表8-7可以看出,当天然气价格不高于0.80元/m3,渣油不低于900元/t,煤炭价格不低于300元/t时,天然气合成氨项目比渣油或水煤浆生产合成氨项目具有竞争优势。我国煤层气当前定价基本与天然气一致,因此表8-7中以煤层气替代天然气,结果也是一致的。
但是近年来,油与煤炭的价格大幅度上涨,以油或煤为原料的化肥厂大都停产或限产。而我国化肥需求不断增加,因此以天然气(煤层气)生产化肥企业由于成本低,其盈利能力更强。
需要注意的是,我国为保证农民的利益,对现行化肥用气实行低价和计划配额政策,天然气价格向以天然气做原料的化肥生产倾斜。2008年,国家规定的化肥用气出厂价是0.59元/m3,而其他工业用气出厂价是0.725元/m3,二者相差0.135元/m3[159]。如果按煤层气现行价格,除煤矿区自抽自用,可以煤层气作为化肥生产原料,其他地区则是不经济的。
据悉,晋城煤业的煤层气的单井平均投资约300万元,开采运行费用每月每井6万元左右,如日产2000m3,保持10a,则即使不考虑投资的利息支出等财务费用,也不考虑气源本身费用,静态计算,1m3就需要1.40元以上,故定价为1.80元/m3。如将其加压液化或长距离输送二次销售,显然价格将更高,用于汽车燃料(目前汽油价在5.00元/l左右)仍有较大优势,用作民用燃料或就地发电(电站本身的投资可比燃煤发电降低较多)也可接受,当作化工原料竞争力就较差。若升高至2.00~2.50元/m3,则在目前价格体系下难以再进行化学加工(国家对天然气供化肥原料的价格一直有优惠)。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。